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Abstract

In natural language understanding, many chal-
lenges require learning relationships between
two sequences for various tasks such as simi-
larity, relatedness, paraphrasing and question
matching. Knowledge transfer can be quite
effective for closely related tasks. However,
transferring all knowledge, some of which ir-
relevant for a target task, can lead to sub-
optimal results due to negative transfer. Hence,
this paper focuses on the transferability of both
instances and parameters across natural lan-
guage understanding tasks using an ensemble-
based transfer learning method to circumvent
such issues. The primary contribution of this
paper is the combination of both Dropout and
Bagging for improved transferability in neu-
ral networks, referred to as Dropping herein.
Secondly, we present a straightforward yet
novel approach for incorporating source Drop-
ping Networks to a target task for few-shot
learning that mitigates negative transfer. This
is achieved by using a decaying parameter
chosen according to the slope changes of a
smoothed spline error curve at sub-intervals
during training. We compare the proposed ap-
proach against hard parameter sharing and soft
parameter sharing transfer methods in the few-
shot learning case. We also compare against
models that are fully trained on the target task
in the standard supervised learning setup. The
aforementioned adjustment leads to improved
transfer learning performance and comparable
results to the current state of the art only using
a fraction of the data from the target task.

1 Introduction

Learning relationships between sentences is a fun-
damental task in natural language understanding
(NLU). Given that there is gradience between
words alone, the task of scoring or categorizing
two sentences is made even more challenging, par-
ticularly when either sentence are less grounded

and more conceptually abstract. This research area
has been active since the study of compositional
semantics that represented hierarchical composi-
tions in logical form (Mitchell and Lapata, 2010).
Since then, distributed representations in the form
of word or sub-word vectors have dramatically im-
proved models when coupled with neural networks
for supervised learning, as seen for distributed com-
positional semantic models e.g pairwise-based neu-
ral networks for textual entailment, paraphrasing
and relatedness scoring (Mueller and Thyagarajan,
2016).

Therefore, we focus on such tasks to evaluate our
proposed transfer learning approach. Hence, we
start by providing a brief description of the datasets
used. We show the model averaging properties of
Dropping networks show significant benefits over
Bagging neural networks or a single neural net-
work with Dropout, particularly when dropout is
high (p=0.5), leading to greater diversity and spe-
cialization in each model. Additionally, we find
that distant tasks that have some knowledge trans-
fer can be overlooked if possible effects of negative
transfer are not addressed. The proposed weighting
scheme takes this issue into account, improving
over alternative approaches as we will see in Sec-
tion 5.

2 Dataset Description

2.1 Natural Language Inference

Natural Language Inference (NLI) deals with infer-
ring whether a hypothesis is true given a premise.
Such examples are seen in entailment and contra-
diction. The Stanford Natural Language Inference
(SNLI) dataset introduced by Bowman et al. (2015)
provides the first large scale corpus with a total of
570K annotated sentence pairs (much larger than
previous semantic matching datasets such as the
SICK (Marelli et al., 2014) dataset that consisted



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Confidential Review Copy. DO NOT DISTRIBUTE.

of 9927 sentence pairs). As described in the open-
ing statement of McCartney’s thesis (MacCartney,
2009), “the emphasis is on informal reasoning, lex-
ical semantic knowledge, and variability of linguis-
tic expression.” The SNLI corpus addresses issues
with previous manual and semi-automatically anno-
tated datasets of its kind which suffer quality, scale
and entity co-referencing that leads to ambiguous
and ill-defined labeling. They do this by grounding
the instances with a given scenario which leaves a
precedent for comparing the contradiction, entail-
ment and neutrality between premise and hypothe-
sis sentences.

Since the introduction of this large annotated
corpus, further resources for multi-genre NLI
(MultiNLI) have recently been made available as
apart of a Shared RepEval task (Nangia et al.,
2017; Williams et al., 2017). MultiNLI extends a
433k instance dataset to provide a wider coverage
containing 10 distinct genres of both written and
spoken English, leading to a more detailed anal-
ysis of where machine learning models perform
well or not, unlike the original SNLI corpus that
only relies only on image captions. As authors
describe, “temporal reasoning, belief, and modal-
ity become irrelevant to task performance” are not
addressed by the original SNLI corpus. Another
motivation for curating the dataset is particularly
relevant to this problem, that is the evaluation of
transfer learning (TL) across domains, hence the in-
clusion of these datasets in the analysis. These two
NLI datasets allow us to analyze the transferability
for two closely related datasets.

2.2 Question Matching

Question matching (QM) is a relatively new pair-
wise learning task in NLU for semantic relatedness,
the increased interest can be greatly attributed to
the release of the Quora dataset provided in the
form of a Kaggle competition1. The task has impli-
cations for Question-Answering (QA) systems and
more generally, machine comprehension. A known
difficulty in QA is the problem of responding to a
question with the most relevant answers. In order
to respond appropriately, grouping and relating sim-
ilar questions can greatly reduce the possible set of
correct answers that a neural network predicts. The
Quora team have developed models for this task
(quo), starting with hand crafted features, and then
further developing a SN that combines encodings

1see here: https://www.kaggle.com/c/quora-question-pairs

in a dense network upstream. The Quora challenge
has a few characteristics that are worth pointing
out from the onset. The dataset is created so that
a unique question, or questions identical in intent,
are not paired more than once. This ensures that
a classifier does not require many pairings of the
same questions to learn as in practice the likelihood
of the exact same question being asked is relatively
low. However, questions can appear in more than
one instance pair (S1i ,S2i ). In this work we ensure
duplicates are not tested upon if at least one pair of
the duplicate is used for single-task learning. Sec-
ondly, it is worth noting there has been speculation
on the sampling used to generate the question pairs,
and if so, does it skew the results by introducing
bias, as the sampling method could be bias towards
various topics in Quora, this is worth noting for the
subsequent supervised TL.

3 Related Work

3.1 Neural Network Transfer Learning

In TL we seek to transfer knowledge from a one
or more source task Ts in the form of instances,
parameters and/or external resources to improve
performance on a target task Tt. This work is con-
cerned about improving results in this manner, but
also not to degrade the original performance of
Ts, referred to as Sequential Learning. In the past
few decades, research on transfer learning in neural
networks has predominantly been parameter based
transfer. Yosinski et al. (2014) have found lower-
level representations to be more transferable than
upper-layer representations since they are more
general and less specific to the task, hence negative
transfer is less severe. This paper will later describe
a method for overcoming this using an ensembling-
based method, but before we note the most relevant
work on transferability in neural networks.

Pratt et al. (1991) introduced the notion of pa-
rameter transfer in neural networks, also showing
the benefits of transfer in structured tasks, where
transfer is applied on an upstream task from its sub-
tasks. Further to this (Pratt, 1993), a hyperplane
utility measure as defined by θs from Tt which
then rescales the weight magnitudes was shown to
perform well, showing faster convergence when
transferred to Tt.

Raina et al. (Raina et al., 2006) focused on
constructing a covariance matrix for informative
Gaussian priors transferred from related tasks on
binary text classification. The purpose was to over-
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come poor generalization from weakly informative
priors due to sparse text data for training. The
off-diagonals of

∑
represent the parameter depen-

dencies, therefore being able to infer word relation-
ships to outputs even if a word is unseen on the
test data since the relationship to observed words is
known. More recently, TL in neural networks has
been predominantly studied in Computer Vision
(CV). Models such as AlexNet allow features to
append to existing networks for further fine tuning
on new tasks (Zheng et al., 2016). They quantify
the degree of generalization each layer provides
in transfer and also evaluate how multiple CNN
weights are used to be of benefit in TL. This also
reinforces to the motivation behind using ensem-
bles in this paper.

3.1.1 Transferability in Natural Language
Mou et al. (2016) describe the transferability of

parameters in neural networks for NLP tasks. Ques-
tions posed included the transferability between
varying degrees of “similar” tasks, the transferabil-
ity of different hidden layers, the effectiveness of
hard parameter transfer and the use of multi-task
learning as opposed to sequential based TL. They
focus on transfer using hard parameter transfer,
most relevantly, between SNLI and SICK. They
too find that lower level features are more general,
therefore more useful to transfer to other similar
task, whereas the output layer is more task specific.
Another important point raised in their paper was
that a large learning rate can result in the transferred
parameters being changed far from their original
transferred state. As we will see, the method pro-
posed here will inadvertently address this issue
since the learning rates are kept intact within the
ensembled models, a parameter adjustment is only
made to their respective weight in a vote.

3.2 Dropout and Bagging Connection

Here we briefly describe past work that describe
the connections between both Dropout (parameter-
based) and Bagging (instance-based) model aver-
aging techniques. Most notably, Baldi and Sad-
owski (Baldi and Sadowski, 2014, 2013) study the
model averaging properties of dropout in neural
networks with logistic and ReLU units, the dropout
rate, dropping activation units and/or weights, con-
vergence of dropout and the type of model aver-
aging that is being achieved using dropout. They
point out that dropout is performing SGD over the
global ensemble error from subnetworks online

instead of over the instances. Warde et al. (Warde-
Farley et al., 2013) provide empirical results on the
performance of dropout in ANN’s that use ReLU
activation functions and compare the geometric
mean used in dropout to the arithmetic mean used
in ensembles (such as Bagging). Gal and Ghahra-
mani (Gal and Ghahramani, 2016) give a Bayesian
perspective on dropout, casting dropout as approx-
imate Bayesian inference in deep Gaussian Pro-
cesses, interpreting dropout as a way to account for
model uncertainty.

Concretely, dropout is a model averaging tech-
nique for ANN’s that uses the geometric mean in-
stead of arithmetic mean that is used for Bagging.
In dropout the weights are shared in a single global
model, whereas in ensembles the parameters are
different for each model. Combining both is par-
ticularly suitable for avoiding negative transfer as
models within the ensemble that perform well be-
tween Ts and Tt can be given a higher weight α
than those that produce higher accuracy on Tt. One
strategy would be to solely rely on parameter trans-
fer during training, considering only subnetworks
induced via dropout, however, it is not clear when
to decide the checkpoints that are most suitable
to retrieve subnetwork weights that avoid negative
transfer in particular. Hence, we rely on Bagging to
somewhat mitigate this issue, yet still provide the
generalization benefits that geomtric-based model
averaging has shown to provide.

3.3 Pairwise Model Architectures

Before discussing results we describe the current
SoTA for pairwise learning in Natural Language
Understanding (NLU). Wang et al. (Wang et al.,
2017a) recently proposed a self-matching attention
network for reading comprehension style question
answers that incorporates the use of pointer net-
works to identify the answer position from a given
passage, showing top results on the Stanford Ques-
tion Answering dataset (SQuAD) (Rajpurkar et al.,
2016), using ensembling showed a 75.9%, a 4.6 per-
centage point increase over the single model. The
similarity of this approach with ours is that a GRU
network with standard soft attention is used to align
the question and passage. Wang et. al (Wang et al.,
2017b) also describe a Bilateral Multi-Perspective
Matching model that proposes to overcome limi-
tations in encoding of sentence representations by
considering interdependent interactions between
sentence pairs, likewise, we too offer a co-attention



4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

mechanism between hidden layers to address this.
Their work attempts this by first encoding both sen-
tences separately with a BiLSTM and then match
the two encoded sentences in two directions, at
each timestep, a sentence is matched against all
time-steps of the other sentence from multiple per-
spectives. Then, another BiLSTM layer is utilized
to aggregate the matching results into a fixed-length
matching vector, a prediction is then made through
a fully connected layer. This was demonstrated on
NLI, Answer Selection and Paraphrase Identifica-
tion.

Shen et al. (2017) use a Word Embedding Cor-
relation (WEC) model to score co-occurrence prob-
abilities for Question-Answer sentence pairs on Ya-
hoo! Answers dataset and Baidu Zhidao Q&A pairs
using both a translation model and word embedding
correlations. The objective of the paper was to find
a correlation scoring function where a word vector
is given while modelling word co-occurrence given
as C(qi, αj) = (vTqi/||vqi ||) × (Mvaj/M||vaj ||),
where M is a correlation matrix, vq a word vec-
tor from a question and a word vector va from an
answer. The scoring function was then expanded
to sentences by taking the maximum correlated
word in answer in a question divided by the answer
length.

Parikh et al. (2016) present a decomposable
attention model for soft alignments between all
pairs of words, phrases and aggregations of both
these local substructures. The model requires far
less parameters compared to attention with LSTMs
or GRUs. This paper uses attention in an SN by
proposing attention across hidden layer represen-
tations of sentences, in an attempt to mimic how
humans compare sentences. Weights are often tied
in networks, according to the symmetric property
(S1i ,S2i ).

Yang et al. (2017) have described a character-
based intra attention network for NLI on the SNLI
corpus, showing an improvement over the 5-hidden
layer BiLSTM network introduced by Nangia et al.
(2017) used on the MultiNLI corpus. Here, the ar-
chitecture also looks to solve to use attention to pro-
duce interactions to influence the sentence encod-
ing pairs. Originally, this idea was introduced for
pairwise learning by using three Attention-based
Convolutional Neural Networks (Yin et al., 2015)
that use attention at different hidden layers and not
only on the word level. Although, this approach
shows good results, word ordering is partially lost

in the sentence encoded interdependent representa-
tions in CNNs, particularly when max or average
pooling is applied on layers upstream.

Chen et al. (2017a) currently provide the best
performing model on SNLI, by incorporating ex-
ternal knowledge from WordNet (Miller, 1995)
and Freebase (Bollacker et al., 2008) in the co-
attention mechanism. This accounts for local in-
formation between sentences, instead of encod-
ing fixed representations of each sentence sepa-
rately. They demonstrated that attention aided
by external resources can improve the local inter-
dependent interactions between sentences. They
also use a knowledge-enriched inference collection
which refers to comparing the normalized attention
weight matrices both row-wise and column-wise
to model local inference between word pair align-
ments “where a heuristic matching trick with differ-
ence and element-wise product ” (Mou et al., 2015;
Chen et al., 2017b) is used. In fact, in Mou et al.’s
(Mou et al., 2015) work, they somewhat address
the word ordering problem with a standard CNN
for NLI by using a tree-based CNN that attempts to
keep the compositional local order of words intact.

4 Methodology

This section describes data augmentation, pairwise
learning, the use of attention and how the proposed
TL method is used for initialization across the tasks.
In fact, the more complex architectures become,
the more difficult it becomes to study and interpret
empirical results between Dropping transfer and its
comparable hard parameter transfer baseline.

Data Augmentation For both Stanford NLI
(SNLI) and Multi-NLI (MNLI) the class distri-
bution is almost even therefore no re-weighting
or sampling is required in these cases. However,
due to the slight imbalance in the Quora dataset
(36% matching questions and the remaining non-
matching questions) a weighted Negative Log-
Likelihood (NLL) loss function is used to account
for the slight disproportion in classes. Another
strategy is to upsample by reordering S1 and S2 to
improve generalization, this is allowed because the
semantics should be symmetric in comparison.

4.1 Baselines
For single-task learning, the baseline proposed for
evaluating the co-attention model and the ensemble-
based model consists of a standard GRU network
with varying architecture settings for all three
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datasets. During experiments we tested different
combinations of hyperparameter settings. All mod-
els are trained for 30,000 epochs, using a dropout
rate p = 0.5 with Adaptive Momentum (ADAM)
gradient based optimization (Kingma and Ba,
2014) in a 2-hidden layer network with an initial
learning rate η = 0.001 with a batch size bT = 128.
As a baseline for TL we use hard parameter transfer
with fine tuning on 50% of X ∈ Ts of upper layers.

For comparison to other transfer approaches we
note previous findings by Yosinski et al. (2014)
which show that lower level features are more gen-
eralizable. Hence, it is common that lower level
features are transferred and fixed for Tt while the
upper layers are fine tuned for the task, as described
in Section 3.3. Therefore, the baseline comparison
simply transfers all weights from θs → θt from a
global model instead of ensembles and these pa-
rameters as initialization before training on few
examples on Tt. Although, negative transfer can
occur if the more generalizable lower level repre-
sentations include redundant or irrelevant examples
for the Tt. Instead, here we are allowing the Tt to
guide the lower level feature representations based
on a weighted vote in the context of a decaying
ensemble-based regularizer.

4.2 Attention

Encoded representations for paired sentences are
obtained from (~h

(l+1)
T1

,~h
(l+1)
T2

) where ~h(l+1) repre-
sents the last hidden layer representation in a neural
network, for recurrent models this is obtained from
at the last time step T . Since longer dependencies
are difficult to encode and by only using the last
hidden state as the context vector ct, words at the
beginning of a sentence have diminishing effect
as the sentence becomes longer. One way of over-
coming these sub-optimal sentence representations
is to attend to the most salient words using the
commonly used Attention Mechanism. Instead of
using the final hidden layer representation for both
(S1, S2), the output of hidden layers at each time
step t is passed to an attention mechanism that acts
as a weighting mechanism. The softmax function
produces the attention weights α by passing all
outputs of the source RNN, hS to the softmax con-
ditioned on the target word of the opposite sentence
ht. A context vector ct is computed as the sum of
the attention weighted outputs by h̄s. This results
in a matrix A ∈ R|S|×|T | where |S| and |T | are the
respective sentence lengths, in this work, the max

Figure 1: Cross-Attention GRU-Siamese Network

length of a given batch. The final attention vector
αt is used as a weighted input of the context vector
ct and the hidden state output ht parameterized by
a xavier uniform intialized weight vector Wc to a
hyperbolic tangent unit.

4.3 Learning to Transfer

Here we note two methods that are considered for
accelerating learning on Tt given the parameters of
a learned model from Ts. We first start by describ-
ing a method that learns to guide weights on Tt
by measuring similarity between θŝ and θt̂ during
training by using moving averages on the slope of
the error curve, followed by a description on the
use of smoothing splines to avoid large changes
due to volatility in the error curve during training.

Dropping Transfer Both dropout and bagging
are common approaches for regularizing models,
the former is commonly used in neural networks.
Dropout trains a number of subnetworks by drop-
ping parameters and/or input features during train-
ing while also have less parameter updates per
epoch. Bagging trains multiple models by sam-
pling instances ~xk ∈ Rd from a distribution p(~x)
(e.g uniform distribution) prior to training. Herein,
we refer to using both in conjunction as Dropping.

Dropping Networks are similar to Adaptive
Boosting (AdaBoost) in that there is a weight as-
signed based on performance during training. How-
ever, Dropping Networks weights are assigned
based on the performance of each batch after Bag-
ging, instead of each data sample. Furthermore, the
use of Dropout promotes sparsity, combining both
arithmetic mean and geometric mean model aver-
aging. Avoiding negative transfer with standard
AdaBoost is too costly in practice too use on large
datasets and is prone to overfitting in the presence
of noise (Mason et al., 2000).

A fundamental concern in TL is that we do not
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want to transfer irrelevant knowledge which leads
to slower convergence and/or sub-optimal perfor-
mance. Therefore, dropping allows to place soft
attention based on the performance of each model
from Ts → Tt using a softmax as a weighted vote.
Once a target model ft is learned from only few ex-
amples on Tt (referred to as few-shot learning), the
weighted ensembled models from Ts can be trans-
ferred and merged with the Tt model. Equation 1
shows the simple weighted vote between models
where N is the number of ensembled models each
of which have batch size S, φ denotes the softmax
function and āls denotes weighted average output
from the ensembles trained on subsets of Ts.

āls =

N∑
i=1

αi

( 1

S

S∑
s=1

φ(zlsi)
)

s.t,

N∑
i=1

αi = 1

(1)
Equation 2 then shows a straightforward update

rule that decays the importance of Ts Dropping
networks as the Tt neural network begins to learn
from only few examples. The prediction from few
samples alt is the single output from T lt and γ is the
slope of the error curve that is updated at regular
intervals during training.

We expect this approach to lead to faster conver-
gence and more general features as the regulariza-
tion is in the form of a decaying constraint from
a related task. The rate of the shift towards the Tt
model is proportional to the gradient of the error
∇xs̃ for a set of mini-batches xs̃. In our experi-
ments, we have set the update of the slope to occur
every 100 iterations.

ŷt = γāls + (1− γ)alt s.t, γ = e−δ (2)

The assumption is that in the initial stages of
learning past knowledge is more important, over
time as the model specializes on a certain task we
rely less on incorporating prior knowledge over
time. In its simplest form, this can be represented
as a moving average over the development set error
curve so to choose δ as shown in Equation 3, where
k is the size of the sliding window. In some cases an
average over time is not suitable when the training
error is volatile between slope estimations. Hence,
alternative smoothing approaches would include
kernel and spline models (Eubank, 1999) for fitting
noisy, or volatile error curves.

δt = E[∇[t,t+k]] (3)

A kernel ψ can be used to smooth over the error
curve, which can take the form of a Gaussian ker-

nel ψ(x̂, xi) = e

(
−(x̂−xi)2/2b2

)
. Another approach

is to use Local Weighted Scatterplot Smoothing
(LOWESS) (Cleveland, 1979; Cleveland and De-
vlin, 1988) which is a non-parametric regression
technique that is more robust against outliers in
comparison to standard least square regression by
adding a penalty term. Equation 4 shows the reg-
ularized least squares function for a set of cubic
smoothing splines ψ which are piecewise polyno-
mials that are connected by knots, commonly dis-
tributed uniformly across the given interval [0, T ].
Splines are solved using least squares with a regu-
larization term λθ2j ∀ j as shown in Equation 4, ψj
being a single piecewise polynomial at the subinter-
val [t, t+ n] ∈ [0, T ]. Each subinterval represents
the space that γ is adapted for over time i.e change
the influence of the Ts Dropping Network as Tt
model learns from few examples over time. This
type of cubic spline is used for the subsequent re-
sult section for Dropping Network transfer.

δ̂[t] = arg min
θ

n∑
i=1

(
yi−

J∑
j=1

θjψj(xi)
)2

+λ
J∑
j=1

θ2j

(4)
.
Classification is then carried out using standard

Cross-Entropy (CE) loss as shown in Equation 5.

L = − 1

N

N∑
i=1

M∑
c=1

yi,c log(ŷi,c) (5)

This approach is relatively straightforward and
on average across all three datasets, 58% more com-
putational time for training 10 smaller ensembles
for each single-task was needed, in comparison to
a larger global model on a single NVIDIA Quadro
M2000 Graphic Processing Unit.

Some benefits of the proposed method can be
noted at this point. Firstly, the distance measure
to related tasks is directly proportional to the on-
line error of the target task. In contrast, hard pa-
rameter sharing does not address such issues. Al-
though, there has also been recent approaches that
use Gaussian Kernel Density estimates to initial-
ize the parameters where uncertainty is accounted
for (O’ Neill and Buitelaar, 2018). Although,
not the focus of this work, the Tt model can be
trained on a new task with more or less classes
by adding or discarding connections on the last
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softmax layer. Secondly, by weighting the mod-
els within the ensemble that perform better on Tt
we mitigate negative transfer problems. We now
discuss some of the main results of the proposed
Dropping Network transfer.

5 Results

The evaluation is carried out on both the rate of
convergence and optimal performance. Hence, we
particularly analyze the speedup obtained in the
early stages of learning. Table 1 shows the results
on all three datasets for single-task learning, the
purpose of which is to clarify the potential perfor-
mance if learned from most of the available training
data (between 70%-80% of the overall dataset for
the three datasets). The ensemble model slightly
outperforms other networks proposed, while the
co-attention network produces similar performance
with a similar architecture to the ensemble models
except for the use of local attention over hidden
layers shared across both sentences. The improve-
ments are most notable on MNLI, reaching com-
petitive performance in comparison to state of the
art (SoTA) on the RepEval task2, held by Chen
et al. (Chen et al., 2017c) which similarly uses
a Gated Attention Network. These SoTA results
are considered as an upper bound to the potential
performance when evaluating the Dropping based
TL strategy for few shot learning.

Figure 2 demonstrates the performance of the
zero-shot learning results of the ensemble network
which averages the probability estimates from each
models prediction on the Tt test set (few-shot Tt
training set or development set not included). As
the ensembles learn on Ts it is evident that most
of the learning has already been carried out by
5000-10,000 epochs. Producing entailment and
contradiction predictions for multi-genre sources is
significantly more difficult, demonstrated by lower
test accuracy when transferring SNLI→MNLI, in
comparison to MNLI→ SNLI that performs better
relative to recent SoTA on SNLI.

Table 2 shows a comparison of the transfer meth-
ods. The first approach is straightforward hard pa-
rameter transfer the results from transferring param-
eters from the Dropping network trained with the
output shown in Equation 2. The ensemble consists
of 10 smaller network on Tt with a dropout rate
pd = 0.5. In the case with SNLI + QM (ie. SNLI
+ Question Matching) and MNLI + QM, 20 ensem-

2https://repeval2017.github.io/shared/

Figure 2: Zero-Shot Learning Between NLU Tasks

bles are transferred, 10 from each model. The QM
dataset is not as “similar” in nature and in the zero-
shot learning setting the model’s weights aS and
aQ are normalized to 1 (however, this could have
been weighted based on a prior belief of how “sim-
ilar” the tasks are). Hence, it is unsurprising that
QM dataset has reduced the test accuracy given it
is further to Tt than S is. The second approach dis-
plays the baseline few-shot learning performance
with fixed parameter transferred from Tt on the
lower layer with fine-tuning of the 2nd layer. Here,
we ensure that instances from each genre within
MNLI are sampled at least 100 times and that the
batch of 3% the original size of the corpus is used
(14,000 instances). Since SNLI and QM are cre-
ated from a single source, we did not to impose
such a constraint, also using a 3% random sample
for testing. Therefore, these results and all subse-
quent results denoted as Train Acc. % refers to
the training accuracy on the small batches for each
respective dataset. We see improvements that are
made from further tuning on the small Tt batch
that are made, particularly on MNLI with a 2.815
percentage point increase in test accuracy. For both
SNLI + QM→MNLI and MNLI + QM→ SNLI
cases final predictions are made by averaging over
the class probability estimates before using CE
loss.

The third method is the proposed model that
transfers parameters from the Dropping network
trained with the output seen in Equation 2, using a
spline smoother with piecewise polynomials (as
described in Equation 4). This approach finds
the slope of the online error curve between sub-
intervals so to choose γ i.e the balance between

https://repeval2017.github.io/shared/
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MNLI SNLI QM

Train Test Train Test Train Test
Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL

GRU-1h 91.927 0.230 68.420 1.112 89.495 0.233 77.347 0.755 84.577 0.214 78.898 0.389
GRU-2h 90.439 0.243 68.277 1.121 89.464 0.224 79.628 0.626 86.308 0.096 77.059 0.092

Bi-GRU-2h 90.181 0.253 68.716 1.065 89.703 0.226 80.594 0.636 88.011 0.108 77.522 0.267
Co-Attention GRU-2h 94.341 0.183 70.692 0.872 91.338 0.211 82.513 0.583 89.690 0.088 81.550 0.218
Ensemble Bi-GRU-2h 91.767 0.260 70.748 0.829 90.091 0.218 81.650 0.492 88.481 0.177 83.820 0.194

Table 1: Single Task Compositional Similarity Learning Results (shaded values represent best performing
models)

Zero-Shot Hard Parameter Transfer Few-Shot Transfer Learning Dropping-GRU CSES

Train Test Train Test Train Test
Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL Acc. / % LL

S→M 60.439 0.243 61.277 1.421 89.655 0.248 64.897 1.696 90.439 0.243 66.207 1.721
S+Q→M 62.317 0.208 62.403 1.392 87.014 0.376 65.218 1.255 86.649 0.317 70.703 0.576

M→ S 74.609 0.611 71.662 0.844 86.445 0.260 73.141 0.729 90.181 0.253 72.716 0.615
M+Q→ S 74.911 0.603 68.006 0.924 85.922 0.281 70.541 0.911 91.783 0.228 77.926 0.598

Table 2: Zero-Shot Hard Parameter Transfer (left), Few-Shot Transfer Learning with Fixed Lower Hidden
GRU-Layer Parameter Transfer From Ts and Fine-Tuned Upper Layer Trained On Tt (middle) and

Dropping-GRU Cubic Spline Error Smoothing (right)

the source ensemble and target model trained on
few examples. The ensemble consists of 20 smaller
networks on Tt with a dropout rate pd = 0.5. We
note that unlike the previous two baselines method
shown in Table 2, the performance does not de-
crease by transferring the QM models to both SNLI
and MultiNLI. This is explained by the use of the
weighting scheme proposed with spline smoothing
of the error curve i.e γ decreases at a faster rate for
Tt due to the ineffectiveness of the ensembles cre-
ated on the QM dataset. In summary, we find trans-
fer of MNLI + QM→ SNLI and SNLI+QM→
MNLI showing most improvement using the pro-
posed transfer method, in comparison to standard
hard and soft parameter transfer. This is reflected
in the fact that the proposed method is the only one
which improved on SNLI while still transferring
the more distant QM dataset.

6 Conclusion

Dropping Networks are based on a simple notion
that combines two common meta-learning model
averaging methods: Bagging and Dropout. The
combination of both can be of benefit to overcome
some limitations in transfer learning such as learn-
ing from more distant tasks and mitigating nega-
tive transfer, most interestingly, in the few-shot
learning setting. This paper has empirically demon-

strated this on learning complex semantic relation-
ships between sentence pairs. Additionally, We
find the co-attention network and the ensemble
GRU network to perform comparably for single-
task learning. Below we summarize some of the
main points and findings from this work:

• The method for transfer only relies on one
additional parameter γ. Also, using a higher
decay rate γ (0.9-0.95) is more suitable for
tasks that are closely related.

• Decreasing γ in proportion to the slope of a
smooth spline fitted to the online error curve
performs better than arbitrary step changes
or a fixed rate for γ (equivalent to static hard
parameter ensemble transfer).

Finally, the proposed transfer procedures using
Dropping networks has been demonstrated in the
context of natural language, although the method
is applicable to any standard, spatial or recurrent-
based neural network.
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losa. 2017. Character-level intra attention network
for natural language inference. arXiv preprint
arXiv:1707.07469.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2015. Abcnn: Attention-based convo-
lutional neural network for modeling sentence pairs.
arXiv preprint arXiv:1512.05193.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? In Advances in neural information
processing systems, pages 3320–3328.

Liang Zheng, Yali Zhao, Shengjin Wang, Jingdong
Wang, and Qi Tian. 2016. Good practice in cnn fea-
ture transfer. arXiv preprint arXiv:1604.00133.


